Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.357
Filter
1.
Article in English | MEDLINE | ID: mdl-38698133

ABSTRACT

Differentiation of Leydig cells plays a key role in male reproductive function. Bone marrow mesenchymal stem cells (BMSCs) have emerged as a potential cell source for generating Leydig-like cells due to their multipotent differentiation capacity and accessibility. This study aimed to investigate the morphological and genetic expression changes of BMSCs during differentiation into Leydig-like cells. Testicular extract liquid, which simulates the microenvironment in vivo, induced the third passage BMSCs differentiated into Leydig-like cells. Changes in cell morphology were observed by microscopy, the formation of lipid droplets of androgen precursor was identified by Oil Red Staining, and the expression of testicular specific genes 3ß-HSD and SF-1 in testicular stromal cells was detected by RT-qPCR. BMSCs isolated from the bone marrow of Sprague-Dawley (SD) rats were cultured for 3 generations and identified as qualified BMSCs in terms of morphology and cell surface markers. After 14 days of induction with testicular tissue lysate, lipid droplets appeared in the cytoplasm of P3 BMSCs by Oil Red O staining. RT-qPCR detection was performed on BMSCs on the 3rd, 7th, 14th, and 21st day after induction. Relative expression levels of 3ß-HSD mRNA significantly increased after 14 days of induction, while the relative expression of SF-1 mRNA increased after 14 days of induction but was not significant. BMSCs can differentiate into testicular interstitial cells with reserve androgen precursor lipid droplets after induction by testicular tissue lysate. The differentiation ability of BMSCs provides the potential to reconstruct the testicular microenvironment and is expected to fundamentally improve testicular function and provide new treatment options for abnormal spermatogenesis diseases.

2.
Environ Sci Ecotechnol ; 21: 100422, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38746775

ABSTRACT

Remediating soil contaminated with polycyclic aromatic hydrocarbons (PAHs) presents a significant environmental challenge due to their toxic and carcinogenic properties. Traditional PAHs remediation methods-chemical, thermal, and bioremediation-along with conventional soil-washing agents like surfactants and cyclodextrins face challenges of cost, ecological harm, and inefficiency. Here we show an effective and environmentally friendly calixarene derivative for PAHs removal through soil washing. Thiacalix[4]arene tetrasulfonate (TCAS) has a unique molecular structure of a sulfonate group and a sulfur atom, which enhances its solubility and facilitates selective binding with PAHs. It forms host-guest complexes with PAHs through π-π stacking, OH-π interactions, hydrogen bonding, van der Waals forces, and electrostatic interactions. These interactions enable partial encapsulation of PAH molecules, aiding their desorption from the soil matrix. Our results show that a 0.7% solution of TCAS can extract approximately 50% of PAHs from contaminated soil while preserving soil nutrients and minimizing adverse environmental effects. This research unveils the pioneering application of TCAS in removing PAHs from contaminated soil, marking a transformative advancement in resource-efficient and sustainable soil remediation strategies.

3.
J Ophthalmol ; 2024: 9911979, 2024.
Article in English | MEDLINE | ID: mdl-38716089

ABSTRACT

Purpose: To determine the advantages of next-generation metagenomic sequencing (mNGS) technology in the diagnosis and treatment of infectious keratitis (IK). Methods: A total of 287 patients with IK admitted to the Department of Ophthalmology of Nanjing First Hospital between August 2018 and December 2022 were analyzed retrospectively, and the pathogenic causes, etiological characteristics, detection, treatment methods, and efficacy were summarized. Results: Trauma and foreign matter were the most common causes of IK (144 patients, 50.2%). Of the 287 patients, 228 (79.4%) were diagnosed with a specific etiology, including 110 (48.2%) fungal infections, 44 (19.3%) viral infections, 42 (18.4%) mixed infections, and 30 (13.2%) bacterial infections. Filamentous fungi represented by Fusarium and Aspergillus were the most common, followed by bacteria such as Pseudomonas aeruginosa, Streptococcus pneumoniae, viruses (Herpes Simplex Virus/Varicella-Zoster Virus), and parasites. The positivity rates of secretion culture, corneal laser confocal microscopy (CM), mNGS, and pathological sections were 47.3% (133/281), 45.3% (111/245), 83.9% (104/124), and 19.3% (40/207), respectively. The positivity rate of mNGS for bacteria and viruses was higher than that of the other methods, and the positivity rate for fungi was the same as that for CM. As a result, 214 cases (74.6%) were cured, 51 cases (17.8%) improved, 8 cases (2.8%) did not heal, ocular content enucleation was performed in 14 cases (4.9%), and the overall efficacy rate was 92.3%. Conclusion: Trauma and foreign matter are the main causes of IK. The mNGS technology is an efficient and comprehensive detection method for viruses and bacteria, especially for mixed infections.

4.
RSC Adv ; 14(21): 14716-14721, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38716097

ABSTRACT

Halide solid-state electrolytes (SSEs) are considered promising candidates for practical applications in all-solid-state batteries (ASSBs), due to their outstanding high voltage stability and compatibility with electrode materials. However, Na+ halide SSEs suffer from low ionic conductivity and high activation energy, which limit their applications in sodium all-solid-state batteries. Here, sodium yttrium bromide solid-state electrolytes (Na3YBr6) with a low activation energy of 0.15 eV is prepared via solid state reaction. Structure characterization using X-ray diffraction reveals a monoclinic structure (P21/c) of Na3YBr6. First principle calculations reveal that the low migration activation energy comes from the larger size and vibration of Br- anions, both of which expand the Na+ ion migration channel and reduce its activation energy. The electrochemical window of Na3YBr6 is determined to be 1.43 to 3.35 V vs. Na/Na+, which is slightly narrower than chlorides. This work indicates bromides are a good catholyte candidate for sodium all solid-state batteries, due to their low ion migration activation energy and relatively high oxidation stability.

5.
Environ Technol ; : 1-15, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717892

ABSTRACT

Membrane fouling is a major hindrance that restricts the application of membrane bioreactors (MBRs). Bdellovibrio-and-like organisms (BALOs), as obligatory parasitic bacteria, prey upon various bacteria. In this study, the BALO mixtures were screened and found more effective in membrane fouling mitigation compared to the single BALO species and extended the membrane filtration period by as long as 33.3%. The higher BALO diversity reduced the potential foulants generation in the activated sludge by decreasing the sludge viscosity as high as 13.8 ± 0.6% than the pure culture of BALO. Meanwhile, the mixed BALOs demonstrated superior biofilm predation capabilities, with the content of soluble microbial products and extracellular polymeric substances on the biofilm decreasing by 26.1 ± 0.5% and 38.3 ± 0.2% as the most compared to the single BALO species involved system. Additionally, the BALO mixtures expanded the single strains' host lysis spectrum of both the activated sludge and biofilm. The abundance of membrane-fouling-related bacteria such as Flavobacterium, Rhodobacter, and Labilithrix and pioneer bacteria such as Sphingorhabdus and Pseudomonas was significantly reduced. In summary, this study disclosed the significantly better membrane fouling mitigation effects of the BALOs with higher diversity, suggesting that the expansion of the host range is crucial for the further application of BALOs to enhance the anti-fouling performance of the MBR system.

6.
Anal Chim Acta ; 1307: 342630, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38719407

ABSTRACT

BACKGROUND: MicroRNAs, as oncogenes or tumor suppressors, enable to up or down-regulate gene expression during tumorigenesis. The detection of miRNAs with high sensitivity is crucial for the early diagnosis of cancer. Inspired by biological ion channels, artificial nanochannels are considered as an excellent biosensing platform with relatively high sensitivity and stability. The current nanochannel biosensors are mainly based on homogeneous membranes, and their monotonous structure and functionality limit its further development. Therefore, it is necessary to develop a heterostructured nanochannel with high ionic current rectification to achieve highly sensitive miRNA detection. RESULTS: In this work, an asymmetric heterostructured nanochannel constructed from dendrimer-gold nanoparticles network and anodic aluminum oxide are designed through an interfacial super-assembly method, which can regulate ion transport and achieve sensitive detection of target miRNA. The symmetry breaking is demonstrated to endow the heterostructured nanochannels with an outstanding ionic current rectification performance. Arising from the change of surface charges in the nanochannels triggered by DNA cascade signal amplification in solution, the proposed heterogeneous nanochannels exhibits excellent DNA-regulated ionic current response. Relying on the nucleic acid's hybridization and configuration transformation, the target miRNA-122 associated with liver cancer can be indirectly quantified with a detection limit of 1 fM and a wide dynamic range from 1 fM to 10 pM. The correlation fitting coefficient R2 of the calibration curve can reach to 0.996. The experimental results show that the method has a good recovery rate (98%-105 %) in synthetic samples. SIGNIFICANCE: This study reveals how the surface charge density of nanochannels regulate the ionic current response in the heterostructured nanochannels. The designed heterogeneous nanochannels not only possess high ionic current rectification property, but also enable to induce superior transport performance by the variation of surface chemistry. The proposed biosensor is promising for applications in early diagnosis of cancers, life science research, and single-entity electrochemical detection.


Subject(s)
Aluminum Oxide , Biosensing Techniques , Dendrimers , Gold , MicroRNAs , MicroRNAs/analysis , Gold/chemistry , Dendrimers/chemistry , Aluminum Oxide/chemistry , Humans , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Limit of Detection , Electrochemical Techniques/methods , Nanostructures/chemistry
7.
Anal Chim Acta ; 1307: 342640, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38719417

ABSTRACT

BACKGROUND: The analysis of cell membrane permeability plays a crucial role in improving the procedures of cell cryopreservation, which will affect the specific parameter settings in loading, removal and cooling processes. However, existing studies have mostly focused on deriving permeability parameters through osmotic theoretical models and cell volume response analysis, and there is still a lack of the direct experimental evidence and analysis at the single-cell level regarding the migration of cryoprotectants. RESULTS: In this work, a side perfusion microfluidics chips combined with Raman spectroscopy system was built to monitor in situ the Raman spectroscopy of extracellular and intracellular solution during loading and elution process with different cryoprotectant solution systems (single and dual component). And it was found that loading a high concentration cryoprotectant solution system through a single elution cycle may result in significant residual protective agent, which can be mitigated by employing a multi-component formula but multiple elution operations are still necessary. Furthermore, the collected spectral signals were marked and analyzed to was perform preliminary relative quantitative analysis. The results showed that the intracellular concentration changes can be accurately quantified by the Raman spectrum and are closely related to the extracellular solution concentration changes. SIGNIFICANCE AND NOVELTY: By using the method of small flow perfusion (≤20 µL/min) in the side microfluidic chip after the gravity sedimentation of cells, the continuous loading and elution process of different cryoprotectants on chip and the spectral acquisition can be realized. The intracellular and extracellular concentrations can be quantified in situ based on the ratio of spectral peak intensities. These results indicate that spectroscopic analysis can be used to effectively monitor intracellular cryoprotectant residues.


Subject(s)
Cryoprotective Agents , Single-Cell Analysis , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Cryoprotective Agents/chemistry , Cryoprotective Agents/pharmacology , Cryoprotective Agents/isolation & purification , Lab-On-A-Chip Devices , Humans , Microfluidic Analytical Techniques/instrumentation , Cryopreservation/methods , Animals
8.
J Bioenerg Biomembr ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38720136

ABSTRACT

Vesicle-associated membrane protein 8 (VAMP8), a soluble n-ethylmaleimide-sensitive factor receptor protein, acts as an oncogenic gene in the progression of several malignancies. Nevertheless, the roles and mechanisms of VAMP8 in colorectal cancer (CRC) progression remain unknown. The expression and prognostic significance of VAMP8 in CRC samples were analyzed through bioinformatics analyses. Cell proliferation was detected using CCK-8 and EdU incorporation assays and apoptosis was evaluated via flow cytometry. Western blot analysis was conducted to examine the protein expression. Ferroptosis was evaluated by measurement of iron metabolism, lipid peroxidation, and glutathione (GSH) content. VAMP8 was increased in CRC samples relative to normal samples on the basis of GEPIA and HPA databases. CRC patients with high level of VAMP8 had a worse overall survival. VAMP8 depletion led to a suppression of proliferation and promotion of apoptosis in CRC cells. Additionally, VAMP8 knockdown suppressed beclin1 expression and LC3-II/LC3-I ratio, elevated p62 expression, increased Fe2+, labile iron pool, lipid reactive oxygen species, and malondialdehyde levels, and repressed GSH content and glutathione peroxidase activity. Moreover, VAMP8 knockdown inhibited the activation of janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway in CRC cells. Mechanistically, activation of the JAK/STAT3 pathway by JAK1 or JAK2 overexpression attenuated VAMP8 silencing-mediated anti-proliferative, pro-apoptotic, anti-autophagic, and pro-ferroptotic effects on CRC cells. In conclusion, VAMP8 knockdown affects the proliferation, apoptosis, autophagy, and ferroptosis by the JAK/STAT3 pathway in CRC cells.

9.
Thorac Cancer ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720472

ABSTRACT

BACKGROUND: Solute carrier family 34 member 2 (SLC34A2) has been implicated in the development of various malignancies. However, the clinical significance and underlying molecular mechanisms of SLC34A2 in esophageal squamous cell carcinoma (ESCC) remain elusive. METHODS: Western blotting, quantitative real-time PCR and immunohistochemistry were utilized to evaluate the expression levels of SLC34A2 mRNA/protein in ESCC cell lines or tissues. Kaplan-Meier curves were employed for survival analysis. CCK-8, colony formation, EdU and xenograft tumor model assays were conducted to determine the impact of SLC34A2 on ESCC cell proliferation. Cell cycle was examined using flow cytometry. RNA-sequencing and enrichment analysis were carried out to explore the potential signaling pathways. The autophagic flux was evaluated by western blotting, mRFP-GFP-LC3 reporter system and transmission electron microscopy. Immunoprecipitation and mass spectrometry were utilized for identification of potential SLC34A2-interacting proteins. Cycloheximide (CHX) chase and ubiquitination assays were conducted to test the protein stability. RESULTS: The expression of SLC34A2 was significantly upregulated in ESCC and correlated with unfavorable clinicopathologic characteristics particularly the Ki-67 labeling index and poor prognosis of ESCC patients. Overexpression of SLC34A2 promoted ESCC cell proliferation, while silencing SLC34A2 had the opposite effect. Moreover, SLC34A2 induced autophagy to promote ESCC cell proliferation, whereas inhibition of autophagy suppressed the proliferation of ESCC cells. Further studies showed that SLC34A2 interacted with an autophagy-related protein STX17 to promote autophagy and proliferation of ESCC cells by inhibiting the ubiquitination and degradation of STX17. CONCLUSIONS: These findings indicate that SLC34A2 may serve as a prognostic biomarker for ESCC.

11.
Emerg Microbes Infect ; : 2353298, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721691

ABSTRACT

With the atypical rise of Mycoplasma pneumoniae infection (MPI) in 2023, prompt studies are needed to determine the current epidemic features and risk factors with emerging trends of MPI to furnish a framework for subsequent investigations. This multicentre, retrospective study was designed to analyse the epidemic patterns of MPI before and after the COVID-19 pandemic, as well as genotypes and the macrolide resistance-associated mutations in MP sampled from pediatric patients in Southern China. Clinical data was collected from 133674 patients admitted into investigational hospitals from June 1, 2017, to November 30, 2023. Metagenomic next-generation sequencing (mNGS) data were retrieved based on MP sequence positive samples from 299 pediatric patients for macrolide resistance-associated mutations analysis. Pearson's chi-squared test was used to compare categorical variables between different time frames. The monthly average cases of pediatric common respiratory infection diseases were increased without enhanced public health measures after the pandemic, especially for influenza, respiratory syncytial virus infection, and MPI. The contribution of MPI to pneumoniae was similar to that in the outbreak in 2019. Compared mNGS data between 2019-2022 and 2023, the severity of MP did not grow stronger despite higher rates of macrolide-resistance hypervariable sites, including loci 2063 and 2064, were detected in childhood MP samples of 2023. Our findings indicated ongoing surveillance is necessary to understand the impact of post pandemic on MP transmission disruption on epidemic season and severity of clinical outcomes in different scenarios.

12.
J Phys Chem A ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709806

ABSTRACT

As important naturally occurring chromophores, photophysical/chemical properties of quinoid flavins have been extensively studied both experimentally and theoretically. However, little is known about the transition dipole moment (TDM) orientation of excited-state absorption transitions of these important compounds. This aspect is of high interest in the fields of photocatalysis and quantum control studies. In this work, we employ polarization-associated spectra (PAS) to study the excited-state absorption transitions and the underlying TDM directions of a standard quinoid flavin compound. As compared to transient absorption anisotropy (TAA), an analysis based on PAS not only avoids diverging signals but also retrieves the relative angle for ESA transitions with respect to known TDM directions. Quantum chemical calculations of excited-state properties lead to good agreement with TA signals measured in magic angle configuration. Only when comparing experiment and theory for TAA spectra and PAS, do we find deviations when and only when the S0 → S1 of flavin is used as a reference. We attribute this to the vibronic coupling of this transition to a dark state. This effect is only observed in the employed polarization-controlled spectroscopy and would have gone unnoticed in conventional TA.

13.
J Natl Cancer Inst ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710487

ABSTRACT

BACKGROUND: Camonsertib is a selective oral inhibitor of ataxia telangiectasia and Rad3-related (ATR) kinase with demonstrated efficacy in tumors with DNA damage response gene deficiencies. On-target anemia is the main drug-related toxicity typically manifesting after the period of dose-limiting toxicity evaluation. Thus dose/schedule optimization requires extended follow-up to assess prolonged treatment effects. METHODS: Long-term safety/tolerability and antitumor efficacy of three camonsertib monotherapy dose levels/schedules were assessed in the TRESR study dose-optimization phase: 160 mg once daily (QD) 3 days on/4 off (160 3/4; the preliminary recommended phase II dose [RP2D]) and two step-down groups of 120 mg QD 3/4 (120 3/4) and 160 mg QD 3/4, 2 weeks on/1 off (160 3/4, 2/1w). Safety endpoints included incidence of treatment-related adverse events (TRAEs), dose modifications, and transfusions. Efficacy endpoints included overall response rate, clinical benefit rate, progression-free survival, and circulating-tumor-DNA (ctDNA)-based molecular response rate. RESULTS: The analysis included 119 patients: 160 3/4 (n = 67), 120 3/4 (n = 25), and 160 3/4, 2/1w (n = 27) treated up to 117.1 weeks as of the data cutoff. The risk of developing grade 3 anemia was significantly lower in the 160 3/4, 2/1w group compared with the preliminary RP2D group (HR = 0.23, 2-sided P = .02), translating to reduced transfusion and dose reduction requirements. The intermittent weekly schedule did not compromise antitumor activity. CONCLUSION: The 160 3/4, 2/1w dose was established as an optimized regimen for future camonsertib monotherapy studies offering significantly reduced anemia incidence without any compromise to efficacy.

14.
World J Pediatr ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713366

ABSTRACT

BACKGROUND: SARS-CoV-2 continues to mutate over time, and reports on children infected with Omicron BA.5 are limited. We aimed to analyze the specific symptoms of Omicron-infected children and to improve patient care. METHODS: We selected 315 consecutively hospitalized children with Omicron BA.5 and 16,744 non-Omicron-infected febrile children visiting the fever clinic at our hospital between December 8 and 30, 2022. Specific convulsions and body temperatures were compared between the two cohorts. We analyzed potential associations between convulsions and vaccination, and additionally evaluated the brain damage among severe Omicron-infected children. RESULTS: Convulsion rates (97.5% vs. 4.3%, P < 0.001) and frequencies (median: 2.0 vs. 1.6, P < 0.001) significantly differed between Omicron-infected and non-Omicron-infected febrile children. The body temperatures of Omicron-infected children were significantly higher during convulsions than when they were not convulsing and those of non-Omicron-infected febrile children during convulsions (median: 39.5 vs. 38.2 and 38.6 °C, both P < 0.001). In the three Omicron-subgroups, the temperature during convulsions was proportional to the percentage of patients and significantly differed ( P < 0.001), while not in the three non-Omicron-subgroups ( P = 0.244). The convulsion frequency was lower in the 55 vaccinated children compared to the 260 non-vaccinated children (average: 1.8 vs. 2.1, P < 0.001). The vaccination dose and convulsion frequency in Omicron-infected children were significantly correlated ( P < 0.001). Fifteen of the 112 severe Omicron cases had brain damage. CONCLUSIONS: Omicron-infected children experience higher body temperatures and frequencies during convulsions than those of non-Omicron-infected febrile children. We additionally found evidence of brain damage caused by infection with omicron BA.5. Vaccination and prompt fever reduction may relieve symptoms.

15.
NPJ Digit Med ; 7(1): 108, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693205

ABSTRACT

Visual impairments and blindness are major public health concerns globally. Effective eye disease screening aided by artificial intelligence (AI) is a promising countermeasure, although it is challenged by practical constraints such as poor image quality in community screening. The recently developed ophthalmic foundation model RETFound has shown higher accuracy in retinal image recognition tasks. This study developed an RETFound-enhanced deep learning (DL) model for multiple-eye disease screening using real-world images from community screenings. Our results revealed that our DL model improved the sensitivity and specificity by over 15% compared with commercial models. Our model also shows better generalisation ability than AI models developed using traditional processes. Additionally, decision curve analysis underscores the higher net benefit of employing our model in both urban and rural settings in China. These findings indicate that the RETFound-enhanced DL model can achieve a higher net benefit in community-based screening, advocating its adoption in low- and middle-income countries to address global eye health challenges.

16.
Natl Sci Rev ; 11(6): nwae060, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38707204

ABSTRACT

Earth is the only known habitable planet in the solar system. Understanding how Earth developed its unique habitability has been the frontier of Earth sciences and has become one of the main themes of current deep-space explorations. What are the decisive factors that led to a habitable planet? What is the role of solid Earth processes in the origin of life and in modulating the surface environment? Are Earth's habitability studies relevant to current challenges that human beings face? These questions have attracted the interest of both scientists and the public alike. NSR spoke to Prof. Charles H. Langmuir from Harvard University in the USA, who is a solid Earth geochemist who carries out research on diverse aspects of the plate tectonic geochemical cycle, including ocean ridges, convergent margins and intraplate volcanism. Prof. Langmuir is the author of the book How to Build a Habitable Planet (www.habitableplanet.org), one of the best Earth science books published in 2012.

17.
J Thorac Imaging ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704662

ABSTRACT

PURPOSE: The relationship between plaque progression and pericoronary adipose tissue (PCAT) radiomics has not been comprehensively evaluated. We aim to predict plaque progression with PCAT radiomics features and evaluate their incremental value over quantitative plaque characteristics. PATIENTS AND METHODS: Between January 2009 and December 2020, 500 patients with suspected or known coronary artery disease who underwent serial coronary computed tomography angiography (CCTA) ≥2 years apart were retrospectively analyzed and randomly stratified into a training and testing data set with a ratio of 7:3. Plaque progression was defined with annual change in plaque burden exceeding the median value in the entire cohort. Quantitative plaque characteristics and PCAT radiomics features were extracted from baseline CCTA. Then we built 3 models including quantitative plaque characteristics (model 1), PCAT radiomics features (model 2), and the combined model (model 3) to compare the prediction performance evaluated by area under the curve. RESULTS: The quantitative plaque characteristics of the training set showed the values of noncalcified plaque volume (NCPV), fibrous plaque volume, lesion length, and PCAT attenuation were larger in the plaque progression group than in the nonprogression group ( P < 0.05 for all). In multivariable logistic analysis, NCPV and PCAT attenuation were independent predictors of coronary plaque progression. PCAT radiomics exhibited significantly superior prediction over quantitative plaque characteristics both in the training (area under the curve: 0.814 vs 0.615, P < 0.001) and testing (0.736 vs 0.594, P = 0.007) data sets. CONCLUSIONS: NCPV and PCAT attenuation were independent predictors of coronary plaque progression. PCAT radiomics derived from baseline CCTA achieved significantly better prediction than quantitative plaque characteristics.

18.
Front Nutr ; 11: 1366435, 2024.
Article in English | MEDLINE | ID: mdl-38689935

ABSTRACT

Breast milk (BM) is a primary biofluid that plays a crucial role in infant development and the regulation of the immune system. As a class of rich biomolecules in BM, microRNAs (miRNAs) are regarded as active factors contributing to infant growth and development. Surprisingly, these molecules exhibit resilience in harsh conditions, providing an opportunity for infants to absorb them. In addition, many studies have shown that miRNAs in breast milk, when absorbed into the gastrointestinal system, can act as a class of functional regulators to effectively regulate gene expression. Understanding the absorption pattern of BM miRNA may facilitate the creation of formula with a more optimal miRNA balance and pave the way for novel drug delivery techniques. In this review, we initially present evidence of BM miRNA absorption. Subsequently, we compile studies that integrate both in vivo and in vitro findings to illustrate the bioavailability and biodistribution of BM miRNAs post-absorption. In addition, we evaluate the strengths and weaknesses of previous studies and discuss potential variables contributing to discrepancies in their outcomes. This literature review indicates that miRNAs can be absorbed and act as regulatory agents.

19.
Heliyon ; 10(9): e30507, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38737284

ABSTRACT

Three previously unidentified dihydrostilbene glycosides, named oleiferaside A (1), oleiferaside B (2), and oleiferaside C (3), were discovered through a phytochemical exploration on Camellia oleifera Abel. leaves. Additionally, nine known secondary metabolites (4-12) were also identified. The undescribed secondary metabolites 1-3 were elucidated as 3,5-dimethoxydihydrostilbene 4'-O-α-l-arabinofuranosyl-(1 â†’ 6)-ß-d- glucopyranoside, 3,5-dimethoxydihydrostilbene 4'-O-α-l-arabinopyranosyl-(1 â†’ 6)-ß-d- glucopyranoside and 3,5-dimethoxydihydrostilbene 4'-O-ß-d-apiofuranosyl-(1 â†’ 6)-ß-d- glucopyranoside, respectively. HR-MS and NMR spectroscopy were utilized for determining the structures of the isolates. The natural products were assessed for their anti-inflammatory effect using RAW264.7 macrophage stimulated by LPS. The findings demonstrated that compounds 1-4 exhibited inhibitory activities on NO and PGE2 production without causing cytotoxicity. These observations suggest that these compounds may have potential anti-inflammatory properties.

20.
J Ethnopharmacol ; : 118325, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740106

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Celosia cristata L. (C. cristata) is a widely used herb in China and has been used as a medicine for more than 1000 years. The herb has been clinically employed to treat various types of bleeding disorders including metrorrhagia, metrostaxis, and leukorrheal diseases, gastrointestinal infections. AIM OF THE STUDY: This review provides a comprehensive analysis of C. cristata, encompassing its botany, traditional applications, phytochemistry, pharmacology, safety, and quality control. Additionally, it delves into the prevailing challenges and limitations with contemporary research concerning C. cristata, thus furnishing valuable insights for future investigations in this domain. MATERIALS AND METHODS: Research data were gathered from authoritative sources including the Pharmacopoeia of China, the Flora of China, as well as various internet databases such as Web of Science, CAS CiFinder, PubMed, Science Direct, and CNKI, along with numerous ancient classics on Chinese herbal medicine. RESULTS: Clinical applications of C. cristata demonstrate its efficacy in treating dysfunctional uterine bleeding, vaginitis, and pelvic inflammatory disease. Presently, seventy-seven compounds have been isolated, including flavonoids, triterpenoids, steroids, organic acids, phenylpropanoids, and alkaloids, with flavonoids and triterpenoids emerging as the primary bioactive constituents. Pharmacological studies reveal its diverse biological activities, such as haemostatic, antitrichomonal, antibacterial, antiviral, analgesic, immunoregulatory, anti-inflammatory, anticancer, hepatoprotective, and antioxidant effects. Leveraging network pharmacology, researchers have embarked on preliminary inquiries into the interplay among chemical constituents, molecular targets and pathological conditions. CONCLUSIONS: C. cristata shows significant potential for use in hemostasis, anti-inflammatory, and antimicrobial treatments. Modern research has revealed its diverse chemical composition and pharmacological activities, making it highly valuable for further study. At the same time, it is necessary to find the characteristic components of C. cristata and establish better quality control standards to better explore its therapeutic potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...